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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Due to their high total efficiency and flexibility, micro Gas Turbines (mGTs) offer great potential for use in small-scale distributed 
cogeneration applications. The economic success of this application; however, fully depends on the optimal usage of the system, 
which requires careful selection of the number and size of the units in the system and their specific operating strategy. This is only 
possible if the performance of each individual unit is known precisely. However, in real world operating conditions, the parameters 
determining the operation and performance of an mGT are only known with a certain uncertainty. Depending on the sensitivity of 
the model to these parameters, the uncertainties may have a strong negative effect on the performance of the mGT. These 
uncertainties should thus be taken into consideration by the designers in an early stage of the design process to achieve a so-called 
robust design. In this paper, we present the robust optimization of a typical mGT, the Turbec T100, operation. This optimization 
under uncertainties is based on a classical multi-objective optimization scheme linked with an uncertainty propagation technique. 
In this approach, a robust optimum is found, less sensitive to variations in design and operation parameters. The deterministic 
optimization results in a Pareto front for maximal electrical efficiency and power output, highlighting that the two objectives are 
conflicting. The impact of the uncertainties on the parameters is translated into a slight negative shift in this Pareto front. Finally, 
the most robust operation can be found at a power output of 106.5 kWe, corresponding to a maximal efficiency of 30.6%. 
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1. Introduction 

The massive deployment of Renewable Energy (RE) to reduce the CO2 emissions of our energy production is 
putting some severe constraints on the electricity grid. Due to the highly fluctuating and unpredictable nature of the 
RE production from wind and solar, there is a growing need for flexibility of the power grid to keep demand and 
production balanced to avoid possible brown- or blackouts. Micro Gas Turbines (mGTs) in distributed power 
generation, typically in small-scale cogeneration applications, can provide such flexibility. However, due to their rather 
high capital investment costs (between 1500 and 2500 €/kWe [1]) and rather low electrical efficiency (30% for a typical 
100 kWe unit), it is essential to optimize the thermodynamic performance (electrical power output and efficiency) to 
make the unit economically profitable.  

In literature, several examples of the optimization of mGTs in co- or trigeneration applications can be found. Several 
examples of the different usage of mGTs as common electricity and heat source in these networks are available in 
literature. Pilavachi [2], Kaikko et al. [3], Katsigiannis and Papadopoulo [4], Nikpey et al. [5] and Caresana et al. [6] 
studied the use of mGTs in typical cogeneration applications for heat production. Alternative integrations, like Bruno 
et al., using an mGT as power source in combination with a desalination plant, which absorbs the generated heat [7] 
and Ho et al., studying the performance of an mGT CHP system with absorption chiller, where the heat is used to 
provide cooling [8], are other typical examples of studies on mGTs integrated in poly-generation networks. Next to 
the optimization of the unit itself, optimization of the grid, i.e. selection of the number of units and their nominal 
power, is also important, since it will influence strongly the yearly operation of the units (running hours and part/full 
load operation) [9,10].  

When performing this optimization, especially when including thermo-economic calculations, typically, only the 
economic parameters (gas and electricity prices and possible subsidies or carbon saving reductions/taxes) are 
considered as variable, due to their very fluctuant nature. However, next to the variable economical parameters, in 
real-world operating conditions, the design and operating parameters determining the mGT and its performance are 
also subject to uncertainties. This will also influence the operation e.g. internal leakage between different 
components [11] or the uncertainty on the machining of the turbomachinery [12] having a severe impact on the cycle 
efficiency. Depending on the sensitivity of the performance to these parameters, the defined uncertainties may have a 
tremendous effect on the performance of the mGT. Deviations on this performance will impact both the network design 
and its operation, possibly leading to different economic results/conclusions.  

It is thus essential for both designers and operators to consider these uncertainties when designing these units/grids 
and determining the operating strategy. This should finally lead to a design insensitive to these parameter variations: 
a so-called robust design. This implies that the impact of the variation of the different parameters needs to be calculated 
for all possible combinations. This is a quite challenging task, especially when the number of variables is high and/or 
when the computational model is costly to evaluate. Therefore, a more systematic approach is required. Several 
techniques exist to reduce the calculation time; however, to the knowledge of the authors, no such efforts have been 
applied on mGT operation.  

In this paper, we present the robust optimization of a typical mGT operation. This optimization under uncertainties 
is based on a classical multi-objective deterministic approach; where no uncertainties are considered, which is linked 
with an uncertainty propagation technique, a non-intrusive Polynomial Chaos (PC) methodology. A numerical model 
of the Turbec T100 mGT is constructed in Aspen Plus and optimized, considering the uncertainties of both operational 
and design parameters. The objectives of the optimization are the maximization of the electrical performance (power 
output and efficiency) by changing the mGT rotational speed and the Turbine Outlet Temperature (TOT). The final 

Nomenclature 

CAF Corrected Air Flow RE Renewable Energy 
CoV Coefficient of Variance SM Surge margin  
mGT micro Gas Turbine SW Stone Wall 
NSPSO Non-dominated Sorting Particle Swarm Optimizer  TIT Turbine Inlet Temperature 
PC Polynomial Chaos TOT Turbine Outlet Temperature 
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aim of this paper is to obtain a robust design for the mGT operation. In the following section, we first present the mGT 
model, followed by the deterministic and robust optimization approaches. Finally, the results of the robust design are 
presented followed by some concluding remarks.  

2. Simulation Approach 

In this section, first the numerical model of the mGT, based on the Turbec T100, is presented. The Turbec T100 
(now the Ansaldo Energia AE-T100) was selected since it is representative for the state-of-the-art of mGTs. Next, the 
used deterministic optimization approach and finally the robust optimization method are described and discussed.  

2.1. Micro Gas Turbine (mGT) model 

The Turbec T100 is a typical mGT, operating according the recuperated Brayton cycle principle (Figure 1). Indeed, 
given the typical low operating pressure of the system (3-5 bar), the compressed air leaving the variable speed radial 
compressor (1) is first preheated by the exhaust gases of the turbine in a recuperator (2) before entering the combustion 
chamber (3) to increase the cycle efficiency. In this combustion chamber, to achieve maximal efficiency, natural gas 
is burnt to increase the Turbine Inlet Temperature (TIT) to a maximum of 950°C. The hot gases expand in the 
turbine (4), delivering mechanical power to drive the compressor. The residual power is converted into electrical power 
by a variable speed generator (5). Finally, the remaining heat from the hot gases leaving the recuperator is partially 
recovered in a heat exchanger, the economizer (6), producing thermal power. In nominal operating conditions, the 
Turbec T100 produces 100 kWe and 166 kWth power at a total efficiency of 80% (30% electrical efficiency).  

The used numerical Aspen Plus model of the mGT is an adapted model of the mGT [13], previously used to model 
humidification [14,15] and exhaust gas recirculation in the cycle [16] and is experimentally validated. For the robust 
optimization, presented in this paper, this mGT model was slightly adjusted. For the different components, the actual 
values given by the manufacturer have been used. For the compressor modelling, the actual map linking rotational 
speed with the air mass flow rate — expressed as Corrected Air Flow (CAF) —, pressure ratio and isentropic efficiency 
has been used (the maps are similar to the one presented in [6]). Although the recuperator combines, in reality, counter-
flow exchange zones (interior of the component) with cross-flow zones (in- and outlet sections) [17], for this paper, 
the heat exchanger was modelled using a counter-flow model with corrected fixed heat transfer coefficient and area, 

 

Figure 1: The Turbec T100 is a typical mGT operating according the recuperated Brayton cycle principle, consisting of a compressor (1), 
recuperator (2), combustion chamber (3), turbine (4), economizer (6) and generator (5). 
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obtained based on data available in literature [17] and from experiments. A similar approach was used to model the 
pressure losses in this recuperator, linking heat exchanger surface with pressure loss. The combustion chamber was 
modelled using a Gibbs reactor, assuming complete combustion (100% combustion efficiency), given that the 
combustion takes place in lean conditions. In this combustion chamber, a given pressure loss (5%) and heat loss 
(10 kWth) have been considered. As fuel, a mixture of methane (90%) and nitrogen (10%) was selected, which 
corresponds to a certain extend to the natural gas available to the test rig at the Vrije Universiteit Brussel [18]. To 
ensure Aspen converge each time, independent of the initial condition for the system air mass flow rate, to a physical 
solution, the turbine was not modelled using the actual maps. Alternatively, the component was assumed to be choked, 
considering a constant CAF of 6.5 kg√K/sbar, having a constant outlet pressure of 1.050 bar, an isentropic efficiency 
of 85% and a mechanical efficiency of 99% for all operating points. Previous simulations have validated this 
assumption of choked operation [13]. For the determination of the electrical power production and efficiency, a total 
conversion efficiency of 94% of the mechanical power of the shaft was assumed, combining the losses in the generator 
and the power electronics. To consider possible non-idealities of the mGT production process and aging of the 
machine, three leakage streams (from the compressor outlet to the recuperator cold side outlet, from the compressor 
outlet to the turbine inlet and from the recuperator cols side inlet to the recuperator hot side outlet) bypassing part of 
the cycle have been considered. Finally, concerning the thermal power production part of the mGT, the economizer is 
simulated as a cross-flow heat exchanger, again with given heat exchange coefficient and area. The different optional 
parameters entered in the Aspen Plus model are summarized in Table 1.  

Like most mGTs, the Turbec T100 is a unit that operates at constant power output [19]. Rather than changing the 
amount of air entering the system or the TIT to control the power output, the rotational speed of the engine is adjusted. 
This allows to keep compressor efficiency high, even at part load operation. To ensure high electrical efficiency, the 
mGT operates at nominal and part-load operation at maximum TOT of around 645°C (material limit of the metal used 
for the recuperator) by controlling the fuel mass flow rate injected in the combustion chamber. In the Aspen model, 
both control loops are implemented as Design Spec, changing rotational speed for power control and fuel mass flow 
rate for TOT control. For the optimization presented in this case; however, the constant power operation was replaced 
by constant speed operation, which allowed more flexibility in the simulations (see following section).  

Table 1: Nominal values and uncertainties of the operational parameters implemented in the Aspen Plus model of the mGT 

Operational parameter Nominal Value Uncertainty3 
Compressor inlet temperature  15°C 1°C 
Compressor inlet pressure 1.013 bar 0.1% 
Pressure ratio Variable1 1% 
Corrected Air Flow (CAF) Variable1 1% 
Compressor isentropic Efficiency Variable1 1% 
Recuperator surface 120 m² 1% 
N2 content of the fuel 10% 10% 
Combustor heat loss 10 kWth 1% 
Turbine isentropic Efficiency 85% 1% 
Turbine outlet pressure 1.050 bar 1% 
Turbine choking constant  6.5 kg√K/sbar 1% 
Leak flow 1 1%2 100% 
Leak flow 2 1%2 100% 
Leak flow 3 1%2 100% 

1Pressure ratio, CAF and isentropic efficiency are determined based on the actual compressor maps and change according the rotational 
speed.  

2The leak flow rate is defined as a percentage of the air flow rate entering the compressor. 
3Presented uncertainties are relative values, except for the compressor inlet temperature (absolute uncertainty) 
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2.2. Multi-Objective Deterministic Optimization 

The first step of a robust optimization includes a deterministic optimization, not considering the uncertainties. For 
the robust optimization presented in this paper, the Non-dominated Sorting Particle Swarm Optimizer or NSPSO is 
used to handle the multiple objectives of the described test case [20]. The population in NSPSO consists of particles 
which can memorize their best solution found so far and communicate with other particles, in terms of the global best. 
The application of this optimization tool on the mGT operation has already been presented [21] and is briefly 
summarized here. For the optimization of the mGT operation, the TOT and the rotational speed are varied over their 
boundaries (Table 2), as would be done by the actual control system. Next to the design parameters, three constraints 
are also introduced: surge and stone limit and maximal TIT. The optimal solution should respect a minimal surge 
margin of 10%, should not cross the stone-wall and the TIT should not surpass the turbine material limit of 950°C. As 
objectives for the optimization, maximal electrical efficiency and power output were selected. The objective and 
constraints of the test case are thus defined as follows: 

 max  𝜂𝜂el, 𝑃𝑃el 
 subject to:  SM≥10%; SW≥0%; TIT≤950°C 

where 𝜂𝜂el and 𝑃𝑃el are respectively the electrical efficiency and the electrical power output of the mGT, while SM and 
SW represent the Surge Margin and Stone Wall margin respectively. 

2.3. Robust Optimization 

The present uncertainty quantification module is based on a non-intrusive Polynomial Chaos (PC) 
methodology [22]. This approach for uncertainty quantification has been widely used for solving various non-
deterministic systems [23–27]. Its main advantage compared to crude Monte Carlo technique is its faster convergence 
rate, i.e. the statistical moments are currently predicted with much fewer model evaluations. PC consists in expanding 
the output of interest (in our application electrical efficiency and power output) using multivariate orthogonal 
polynomials in the input variables. A regression-based approach is considered to compute the chaos coefficients. Once 
the chaos coefficients are known, the statistics of the system (mean, variance, higher order moments) can be derived 
from the expansion. A schematic overview of the approach is presented in Figure 2. For a more in-depth 
(mathematical) description of the approach including an application in Computational Fluid Dynamics, we refer 
to [22].  

3. Results 

The deterministic optimization results, as already presented in [21], in a clear Pareto front showing that the 
objectives are conflicting (Figure 3). The maximal power output of 137.9 kWe is not reached at maximal efficiency of 
30.6%, but at a lower efficiency of 28.6%. The maximal efficiency of 30.6%, in turn, corresponds to a power output 
of 111.8 kWe. The efficiency values are slightly lower than the ones obtained in [21], which can be explained by the 
introduction of the different leakage streams. These streams lead to an extra loss in the cycle, negatively impacting the 
electrical performance. Finally, concerning the corresponding values of the control parameters, we can observe that 
the maximal efficiency is obtained at maximal TOT, while the maximal power output is achieved at maximal rotational 
speed. This is in line with previous results and the expectations. Indeed, the power output mainly depends on the air 

Table 2: Design parameter space used for the optimization. 

Design variables Lower Limit Upper Limit Uncertainty 
Rotational Speed 950 Hz 1250 Hz 0.01% 
Turbine Outlet Temperature 560°C 645°C 1°C 
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mass flow rate entering the cycle, which increases with increasing rotation speed. On the other hand, the efficiency of 
the cycle is mainly function of the TIT, which is directly linked with the TOT. The lower efficiency at maximal power 
output is a result of the lower compressor efficiency (the compressor enters a region with lower isentropic efficiency) 
and the lower TIT.  

For the robust optimization process, again the aim was to obtain the inputs, TOT and n, which lead to the most/least 
robust results using PC. To reduce the total dimension of the problem, both objectives, being electrical power output 
(𝑃𝑃el) and electrical efficiency (𝜂𝜂el), are combined in a single result vector 𝐽𝐽, using following weight function: 

 𝐽𝐽 = (𝑤𝑤1
𝑃𝑃el

𝑃𝑃el,0 + 𝑤𝑤2
𝜂𝜂el

𝜂𝜂el,0
) (1) 

with 𝑤𝑤1 = 𝑤𝑤2 = 0.5, 𝑃𝑃el,0 equal to 96 kWe and 𝜂𝜂el,0 28.5%. The robust optimization aims to minimize both 𝜇𝜇𝐽𝐽 and 
𝜎𝜎𝐽𝐽/𝜇𝜇𝐽𝐽 — which is equal to the Coefficient of Variance (CoV) —, still respecting the constraints on the surge margin 

 

Figure 2: The schematic overview of the Robust Optimization procedure. 
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and stone wall and the TIT constraint, taking a margin of 3𝜎𝜎 for each of the parameters into account. Indeed, not only 
the mean value of each parameter, but given the uncertainty on the input parameters, also the standard deviation on 
these constraints (surge margin, stone wall and TIT) need to be considered.  

The robust optimization of the mGT operation leads to a Pareto front for the results vector 𝐽𝐽, showing that the CoV 
can be reduced from 1.25%, which is already relatively low, for the least robust solution to a value of 1.04% for the 
most robust solution (Figure 4). The rather low initial CoV can be explained by the small uncertainties of the 
operational and design parameters (Table 1 and Table 2). Additionally, this also indicates that the model is rather 
insensitive to variations in these parameters. Nevertheless, a reduction remains still necessary to ensure economical 
profitability under all circumstances. The input samples to achieve this Pareto front are also presented in Figure 3 (b), 
clearly indicating that the robustness of the mGT can be improved by reducing the rotational speed, while operating 
at the predefined TOT upper limit. Finally, when focusing on the final electrical power output and efficiency of the 
mGT (Figure 3 (a)), the results between the least and most robust solution are below the Pareto front of the 
deterministic results achieved before. This can be explained by the more severe constraints for the robust optimization, 
since they include an extra 3𝜎𝜎 for all three parameters. Therefore, the robust results achieve lower performances, but 

 
(a) 

 
(b) 

Figure 3: The Pareto front (a) with corresponding values of the design variables (b) — the rotational speed (𝑛𝑛) and the Turbine Outlet Temperature 
(TOT) — indicates that both objectives, maximal electrical power output (𝑃𝑃el) and electrical efficiency (𝜂𝜂el), are conflicting for the deterministic 
optimization. Due to the consideration of the uncertainty of each constraint, the robust result is situated below the deterministic result. The most 
robust result is obtained by reducing the rotational speed while keeping TOT equal to the maximal value of 645°C (b), which corresponds to 
maximal electrical efficiency (a). 

 

Figure 4: The Pareto front for minimization indicates that the CoV can be reduced from 1.25% to 1.04% when going from the least robust to 
the most robust solution.  
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ensure that the constraints will never be violated, keeping in mind the uncertainty on these constraints. Finally, the 
most robust operation is found at maximal TOT, corresponding to a maximal electrical efficiency of 30.4% and a 
corresponding power output of 106.5 kWe. 

4. Conclusion 

In this paper, we presented the robust optimization of a typical mGT, the Turbec T100, operation. The aim was to 
achieve a final operating strategy, less sensitive to the variations of both design and operational parameters. This 
optimization under uncertainties is based on a classical multi-objective deterministic approach; where no uncertainties 
are considered, which is linked with an uncertainty propagation technique using non-intrusive PC methodology. A 
numerical model of the Turbec T100 mGT is constructed in Aspen Plus and optimized, considering the uncertainties 
of both operational and design parameters. The objectives of the optimization are the maximization of the electrical 
performance (power output and efficiency) by changing the mGT rotational speed and the TOT. 

The deterministic optimization resulted in a clear Pareto front for both optimization parameters, highlighting that 
the two objectives are conflicting: maximal electrical efficiency cannot be reached at maximal power output. The 
impact of the uncertainties on the parameters is translated into a slight negative shift in optimal Pareto front, because 
of the additional margin on these constraints due to the uncertainties. Finally, the most robust operation could be found 
at maximal TOT of 645°C and a rotational speed of 67,745 rpm (below the upper limit), corresponding to a maximal 
electrical efficiency of 30.4% and an electrical power output of 106.5 kWe. 
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